Le défit de 40 Tbit/s

Analyse de données structurées en temps réel pour

l'expérience LHCb au CERN

Dorothea vom Bruch

CPPM Marseille

Journée thématique CEDRE Décembre 1^{er} 2022 Campus Saint-Jérôme

erc

- Real-time data analysis in particle physics
- Trend towards heterogeneous computing systems
- Computing challenge: Analyze 40 Tbit/s of data in real-time at the LHCb experiment @ CERN
 - Analyze data on Graphics Processing Units (GPUs)
 - Data structure, algorithms processed in real-time
 - Parallelization strategy
 - Commissioning of system in 2022

LHC @ CERN

Particle collisions

- Two beams of proton bunches in opposite directions
- One bunch crossing of the two beams every 25 ns at the four large LHC experiments

→ "Event"

- The proton-proton collisions occur in a region spread along the beamline
- The position of one proton-proton collision is called primary vertex (PV)

Typical particle detector

x

7

Data challenges in particle physics

Storage

Simulation

Data analysis

"Trigger": Real-time data analysis and reduction

"Trigger": Real-time data analysis and reduction

"Trigger": Real-time data analysis and reduction

When to use hardware versus software trigger?

Hardware trigger

Local characteristic signature, For example high energy / pt particle

Software trigger

Analysis of whole event required → reconstruct all trajectories

Change in trigger paradigm

Access as much information about the collision as early as possible

Real-time software challenges

Largest single internet exchange point: 14 Tbit/s

LHCb experiment @ CERN 40 Tbit/s

Computing performance challenge @ CERN

- In high energy physics, usually assume flat budget for computing cost estimation
- Estimated improvement increase: 10-15% per year for the same budget
- Can no longer count on a stable increase for CPU servers

Trend towards heterogeneous solutions: TOP500

Graphics Processing Unit (GPU)

Developed for graphics-oriented workloads

Consider how much of the problem can actually be parallelized!

The LHCb experiment at CERN

LHC @ CERN

Example: Vertex locator detector

Data produced by every sensor of the detector looks like this:

Recurrent tasks in real-time data analysis

Raw data decoding

- Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system
 Track reconstruction
- Consists of two steps:
 - Pattern recognition: Which hits were produced by the same particle? → "Track"
 - \rightarrow Huge combinatorics when testing different combinations of hits
 - Track fitting: Describe track with mathematical model

Vertex finding

- Where did proton-proton collisions take place?
- Where did particles decay within the detector volume?
 Calorimeter / muon detector reconstruction
- Reconstruct clusters in the calorimeter / muon detectors
- Match tracks to clusters

LHCb's first level real-time analysis on GPUs

High Level Trigger 1 (HLT1) tasks

- Decode binary payload of five sub-detectors
- Reconstruct charged particle trajectories
- Identify particle types
- Reconstruct particle decay vertices
- Select pp-bunch collisions to store

- Manageable amount of algorithms with highly parallelizable tasks
- Ideally suited for parallel architecture of GPUs

Main task: particle trajectory reconstruction

Huge computing challenge for 10⁹ – 10¹⁰ tracks / second

Minimize copies to / from GPU

How does HLT1 map to GPUs?

Characteristics of LHCb HLT1	Characteristics of GPUs
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications
Huge compute load	Many TFLOPS
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs
Small raw event data (~100 kB)	Connection via PCIe → limited I/O bandwidth
Small event raw data (~100 kB)	Thousands of events fit into O(10) GB of memory

Perfect fit!

- Named after Frances E. Allen
- Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen, Sphinx documentation
- Framework developed for processing LHCb's first real-time selection stage (HLT1) on GPUs
- Cross-architecture compatibility via macros & few coding guide lines
 - GPU code written in CUDA, runs on CPUs, Nvidia GPUs (CUDA), AMD GPUs (HIP)
- Algorithm sequences defined in python and generated at run-time
- Multi-event processing with dedicated scheduler
- Memory manager allocates large chunk of GPU memory at start-up
- Reconstruction algorithms re-designed for parallelism and low memory usage: O(MB) per core

LHCb: Software-only real-time analysis since 2022

- Two challenges:
 - 1) Connect sub-detectors to server-farm → FPGA card
 - 2) Use best suited computing architecture for reconstruction of particle collisions at 30 MHz
 - \rightarrow Partial reconstruction fully implemented on GPUs

History: HLT1 architecture choice

- Developed two solutions simultaneously
- Both the multi-threaded CPU & the GPU HLT1 fulfilled the requirements from the 2014 TDR
- Detailed cost benefit analysis

(arXiv:2105.04031)

- GPU solution leads to cost savings on processors and the network
- Throughput headroom for additional features
- Decision: A GPU-based software trigger will allow LHCb to expand its physics reach in Run 3 and beyond.

See also arXiv:2106.07701 on LHCb's energy efficiency with a CPU and GPU HLT1

GPU HLT1 within data acquisition system

GPU HLT1 within data acquisition system

HLT1 commissioning: Allen within the DAQ system

HLT1 commissioning: Towards first collisions

HLT1 commissioning: Towards first collisions

July 2022: First collisions @ 13.6 TeV at the LHC Happy trigger commissioning team

- Particle physics experiments real time analysis systems are entering the exascale computing era
- Need to exploit modern computing techonolgies to face this challenge
- LHCb experiment is commissioning a real-time analysis system full implemented in software in 2022
- First time in particle phyiscs to process 30 million proton-proton collisions per second on GPUs
- Developed Allen: a heterogeneous software framework for multi-event processing
- Gain expertise in heterogeneous DAQ systems
 - → Preparing to exploit emerging new architectures entering the market

Backup

What do we reconstruct at LHCb?

Run 3: 40 Tbit/s → PCIe40 card developed

- Receives data from sub-detectors and transfers it to the server memory for event building via PCIe connection
- Local data processing occurs on the card using only the information from the links connected to it
- Card is generic enough to be re-used by other experiments: ALICE, Belle-II, Mu3e

PCIe40 card

- Towards Run 5: increase bandwidth and processing power by factor 10
- Run 4: PCIe400 card to transfer 400 Gbit/s via PCIe connection
- Run 5: Transfer 800 Gbit/s via ethernet connection using more powerful FPGA
- Add more local processing to the board in the future to reduce processing load of HLT

Overview of GPU usage in various HEP experiments

Experiment	Main tasks processed on GPU	Event / data rate	Number of GPUs	Deployment date	
Mu3e	Track- & vertex reconstruction	20 MHz / 32 Gbit/s	O(10)	2023	
CMS	Decoding, clustering, pattern recognition in pixel detector	100 kHz		2022 (tbc)	
ALICE	Track reconstruction in three sub- detectors	50 kHz Pb-Pb or < 5 MHz p-p / 30 Tbit/s	O(2000)	2022	
LHCb	Decoding, clustering, track reconstruction in three sub-detectors, vertex reconstruction,	30 MHz/ 40 Tbit/s D. vom Bruch	O(250) https	2022 ://arxiv.org/pdf/2003.11491.pdf	

38

CPU – GPU – FPGA

	Latency	Connection	Engineering cost	FP performance	Serial / parallel	Memory	Backward compatibility
CPU	O(10) μs	Ethernet, USB, PCIe	Low entry level: Programmable with C++, pthon, etc.	O(1-10) TFLOPs	Optimized for serial, increasingly vector processing	O(100) GB RAM	Compatible, except for vector instruction sets
GPU	O(100) µs	PCIe, Nvlink	Low to medium entry level: Programmable with CUDA, OpenCL, etc.	O(10) TFLOPs	Optimized for parallel performance	O(10) GB	Compatible, exept for specific features
FPGA	Fixed O(100) ns	Any connection via PCB	High entry level: traditionally hardware description languages, Some high-level syntax available	Optimized for fixed point performance	Optimized for parallel performance	O(10) MB on the FPGA itself	Not easily backward compatible

- Developed for graphics pipeline
- General purpose computations possible
- Increasingly used for AI applications
- Hardware specialized in this direction since few years
- Programmed with high-level language

Low core count / powerful ALU Complex control unit Large chaches

 \rightarrow Latency optimized

High core count No complex control unit Small chaches → **Throughput optimized**

FPGAs – High Level Synthesis for Neural Networks

- Traditionally, programmed with hardware description languages (Verilog, VHDL) → long development time
- Increasingly more high-level languages (HLS) developed
- Challenges:
 - Fit into resource constraints of FPGA
 - Preserve model performance
- Specialized hardware blocks emerging implementing functions for Neural networks such as tensor blocks

FPGA: thousands of logic blocks, I/O blocks, connected via programmable interconnect

Source: National Instruments