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Outline

● Real-time data analysis in particle physics
● Trend towards heterogeneous computing systems
● Computing challenge: Analyze 40 Tbit/s of data in real-time at the LHCb 

experiment @ CERN
• Analyze data on Graphics Processing Units (GPUs)

• Data structure, algorithms processed in real-time

• Parallelization strategy

• Commissioning of system in 2022
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LHC @ CERN
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Particle collisions

● Two beams of proton bunches in opposite directions
● One bunch crossing of the two beams every 25 ns at the 

four large LHC experiments
→ “Event”

● The proton-proton collisions occur in a region spread 
along the beamline

● The position of one proton-proton collision is called 
primary vertex (PV)
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Typical particle detector
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Data challenges in particle physics

Detector
Selection

Storage

SimulationSimulation Data analysis
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“Trigger”: Real-time data analysis and reduction

accumulate analyze → reduce
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“Trigger”: Real-time data analysis and reduction

accumulate analyze → reduce

analyze → reduce

analyze → reduce

Large 
data rate

First: Hardware trigger
● Data obtained directly from detector
● Decision taken in fixed time, low latency
● Based on local information from a subdetector
● Chip constraints → not too complex calculations

Second: Software trigger
● Data already transferred to a server
● Decision taken with medium latency
● Based on information from several subdetectors
● Processor constraints less stringent
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When to use hardware versus software trigger?

Selection

Local characteristic signature,
For example high energy / pt particle

Analysis of whole event required 
→ reconstruct all trajectories

Hardware trigger Software trigger
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Change in trigger paradigm

Access as much information about the collision as early as possible
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Real-time software challenges

: fully software trigger 
• Online reconstruction at 40 MHz 
• 30 MHz ofi nelastic collisions reduced to 

1 MHz in Hlt1 (running on GPUs) 
• Offi ne-quality reconstruction in “real-time” 
• Increase of hadronic trigger eff ciency by 

2–4 wrt. Run 2

Highest data processing rate of any HEP experiment!

M. Fontana (LPNHE) 19-10-2022 11 / 23
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… in the global context

Largest single internet exchange point: 
14 Tbit/s

LHCb experiment @ CERN 
40 Tbit/s
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Computing performance challenge @ CERN

● In high energy physics, usually assume flat budget for computing cost estimation 
● Estimated improvement increase: 10-15% per year for the same budget
● Can no longer count on a stable increase for CPU  servers

Image source

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Trend towards heterogeneous solutions: TOP500

ARM processors

IBM Power9

Nvidia GPUs: In 7/10 HPC centers

Manycore processor: Sunway / NUDT

AMD & Intel CPUs

https://www.top500.org/lists/top500/2021/11/

https://www.top500.org/lists/top500/2021/11/
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Graphics Processing Unit (GPU)

Developed for graphics-oriented workloads
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When to go parallel?

Consider how much of the problem can actually be parallelized!

Parallel Sequential 



D. vom Bruch 18

The LHCb experiment at CERN
LHC  @ CERN
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LHCb produces structured data

Sensor number, 
layer number, 
number of fired 
pixels in sensor 

Pixel 4, Pixel 
48, Pixel 153

Header

Payload

Example: Vertex locator detector Data produced by every sensor of 
the detector looks like this:
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Recurrent tasks in real-time data analysis

Raw data decoding
● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system

Track reconstruction
● Consists of two steps:

• Pattern recognition: Which hits were produced by the same particle? → “Track”

 → Huge combinatorics when testing different combinations of hits
• Track fitting: Describe track with mathematical model

Vertex finding
● Where did proton-proton collisions take place? 
● Where did particles decay within the detector volume?

Calorimeter / muon detector reconstruction
● Reconstruct clusters in the calorimeter / muon detectors
● Match tracks to clusters
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By

LHCb’s first level real-time analysis on GPUs

● Manageable amount of algorithms with highly parallelizable tasks
● Ideally suited for parallel architecture of GPUs

High Level Trigger 1 (HLT1) tasks
● Decode binary payload of five sub-detectors
● Reconstruct charged particle trajectories
● Identify particle types
● Reconstruct particle decay vertices
● Select pp-bunch collisions to store
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Main task: particle trajectory reconstruction

Huge computing challenge for 109 – 1010 tracks / second 

f(x) = … +/- ...

Pattern recognition Track fit
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Three levels of parallelization

Intra-collision: Tracks, vertices, ...
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Proton collisions Collision batches
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Minimize copies to / from GPU
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Raw data

Selection decisions

Server GPU
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How does HLT1 map to GPUs?

Characteristics of LHCb HLT1 Characteristics of GPUs

Intrinsically parallel problem:
  - Run events in parallel
  - Reconstruct tracks in parallel

Good for 
  - Data-intensive parallelizable applications 
  - High throughput applications

Huge compute load Many TFLOPS

Full data stream from all detectors is read out 
→ no stringent latency requirements

Higher latency than CPUs, not as predictable as FPGAs

Small raw event data (~100 kB) Connection via PCIe → limited I/O bandwidth

Small event raw data (~100 kB) Thousands of events fit into O(10) GB of memory

Perfect fit!
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The Allen software project

● Named after Frances E. Allen

● Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen, Sphinx documentation
● Framework developed for processing LHCb´s first real-time selection stage (HLT1) on GPUs

● Cross-architecture compatibility via macros & few coding guide lines
• GPU code written in CUDA, runs on CPUs, Nvidia GPUs (CUDA), AMD GPUs (HIP)

● Algorithm sequences defined in python and generated at run-time 
● Multi-event processing with dedicated scheduler
● Memory manager allocates large chunk of GPU memory at start-up
● Reconstruction algorithms re-designed for parallelism and low memory usage: O(MB) per core

https://en.wikipedia.org/wiki/Frances_E._Allen
https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html
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LHCb: Software-only real-time analysis since 2022
● Two challenges:

1) Connect sub-detectors to server-farm → FPGA card

2) Use best suited computing architecture for reconstruction of particle collisions at 30 MHz

→ Partial reconstruction fully implemented on GPUs
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History: HLT1 architecture choice
Proposal in TDR (2014)
 CERN-LHCC-2014-016

Updated strategy (as of 5/2020)
● Developed two solutions simultaneously
● Both the multi-threaded CPU & the GPU 

HLT1 fulfilled the requirements from the 2014 
TDR

● Detailed cost benefit analysis 
(arXiv:2105.04031)

● GPU solution leads to cost savings on 
processors and the network

● Throughput headroom for additional features
● Decision: A GPU-based software trigger will 

allow LHCb to expand its physics reach in Run 
3 and beyond.

CERN-LHCC-2020-006

pp collisions

Server farm

HLT1

HLT2

storage

event building170 servers

30 MHz

30 MHz

buffer on disk 
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

pp collisions

Server farm

HLT2

storage

HLT1

event building170 servers

buffer on disk 
calibration and alignment

GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

~1 MHz

30 MHz

See also arXiv:2106.07701 on 
LHCb’s energy efficiency with a 
CPU and GPU HLT1

https://cds.cern.ch/record/1701361?ln=en
https://arxiv.org/abs/2105.04031
https://cds.cern.ch/record/2717938?ln=en
https://arxiv.org/abs/2106.07701
https://cds.cern.ch/record/2717938?ln=en
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GPU HLT1 within data acquisition system
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GPU HLT1 within data acquisition system
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HLT1 commissioning: Allen within the DAQ system

HLT1 on GPUs
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HLT1 commissioning: Towards first collisions

LHC beam test October 2021: First time Allen 

was integrated in the experiment system
May 2022: First time Allen ran at 25 MHz input rate
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HLT1 commissioning: Towards first collisions

LHC beam test October 2021: First time 

Allen was integrated in the DAQ system
May 2022: First time Allen ran at 25 MHz input rate

July 2022: First collisions @ 13.6 TeV at the LHC
Happy trigger commissioning team
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Summary

● Particle physics experiments real time analysis systems are entering the exascale 
computing era

● Need to exploit modern computing techonolgies to face this challenge
● LHCb experiment is commissioning a real-time analysis system full implemented in 

software in 2022
● First time in particle phyiscs to process 30 million proton-proton collisions per second on 

GPUs
● Developed Allen: a heterogeneous software framework for multi-event processing
● Gain expertise in heterogeneous DAQ systems 

→ Preparing to exploit emerging new architectures entering the market
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Backup
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What do we reconstruct at LHCb?
Tracks

Electrons
MuonsCherenkov rings

Vertices

By

μ
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LHCb: Readout board PCIe40/400

Run 3: 40 Tbit/s → PCIe40 card developed
● Receives data from sub-detectors and transfers it to the server memory for event building via PCIe connection
● Local data processing occurs on the card using only the information from the links connected to it
● Card is generic enough to be re-used by other experiments: ALICE, Belle-II, Mu3e

● Towards Run 5: increase bandwidth and processing power by factor 10
● Run 4: PCIe400 card to transfer 400 Gbit/s via PCIe connection
● Run 5: Transfer 800 Gbit/s via ethernet connection using more powerful FPGA
● Add more local processing to the board in the future to reduce processing load of HLT

PCIe40 card
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Overview of GPU usage in various HEP experiments
Experiment Main tasks 

processed on GPU
Event / data rate Number of GPUs Deployment date

Mu3e Track- & vertex 
reconstruction

20 MHz /
32 Gbit/s

O(10) 2023

CMS Decoding, 
clustering, pattern 
recognition in pixel 

detector

100 kHz 2022 (tbc)

ALICE Track reconstruction 
in three sub-

detectors

50 kHz Pb-Pb or < 5 
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding, 
clustering, track 
reconstruction in 

three sub-detectors, 
vertex 

reconstruction, 
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf
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CPU – GPU - FPGA

https://arxiv.org/pdf/2003.11491.pdf

Latency Connection Engineering cost FP performance Serial / 
parallel

Memory Backward 
compatibility

CPU O(10) sμ Ethernet, 
USB, PCIe

Low entry level: 
Programmable with C++, 
pthon, etc.

O(1-10) TFLOPs Optimized for 
serial, 
increasingly 
vector 
processing

O(100) GB 
RAM

Compatible, 
except for 
vector 
instruction 
sets

GPU O(100) sμ PCIe, Nvlink Low to medium entry level: 
Programmable with CUDA, 
OpenCL, etc.

O(10) TFLOPs Optimized for 
parallel 
performance

O(10) GB Compatible, 
exept for 
specific 
features

FPGA Fixed
O(100) ns

Any 
connection 
via PCB

High entry level: 
traditionally hardware 
description languages,
Some high-level syntax 
available

Optimized for 
fixed point 
performance

Optimized for 
parallel 
performance

O(10) MB 
on the 
FPGA 
itself

Not easily 
backward 
compatible

https://arxiv.org/pdf/2003.11491.pdf
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GPUs

Low core count / powerful ALU
Complex control unit
Large chaches
→ Latency optimized

High core count
No complex control unit
Small chaches
→ Throughput optimized

● Developed for graphics pipeline
● General purpose computations 

possible
● Increasingly used for AI applications
● Hardware specialized in this 

direction since few years
● Programmed with high-level 

language
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FPGAs – High Level Synthesis for Neural Networks

● Traditionally, programmed with hardware description 
languages (Verilog, VHDL) → long development time

● Increasingly more high-level languages (HLS) developed
● Challenges: 

• Fit into resource constraints of FPGA
• Preserve model performance

● Specialized hardware blocks emerging implementing 
functions for Neural networks such as tensor blocks 

Source: National Instruments

FPGA: thousands of logic blocks, I/O blocks, 
connected via programmable interconnect

https://www.ni.com/fr-fr/innovations/white-papers/08/fpga-fundamentals.html
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